
I/O Performance on a Massively Parallel Cray XT3/XT4

Mark Fahey
Oak Ridge National Laboratory

Oak Ridge, TN 37831-6008
faheymr@ornl.gov

Jeff Larkin
Cray Inc.

Oak Ridge, TN 37831
larkin@cray.com

Joylika Adams
Fisk University

Nashville, TN 37208
jadams49@fisk.edu

Abstract

We present an overview of the current status of in-
put/output (I/O) on the Cray XT line of supercomput-
ers and provide guidance to application developers and
users for achieving efficient I/O. Many I/O benchmark
results are presented, based on projected I/O require-
ments for some widely used scientific applications in the
Department of Energy. Finally, we interpret and summa-
rize these benchmark results to provide forward-looking
guidance for I/O in large-scale application runs on a
Cray XT3/XT4.

1 Introduction

There has been a clear trend in recent years toward
increasingly larger scale supercomputers [5]. As micro-
processor makers move to multicore processors to take
advantage of the additional transistors on each chip, the
number of processor cores in even the smallest super-
computers will become massive by today’s standards.
Researchers are scrambling to determine how to scale
their algorithms to machines with tens and hundreds of
thousands of cores, but computational performance is
only one of the challenges they will face at this scale. It
is critical that application developers examine their cur-
rent and future I/O needs and the I/O capabilities that
will be available to them so they can determine how
best to use system I/O. Traditional I/O methods may no
longer be sufficient at scale. The days when I/O could
be treated as an afterthought to algorithmic performance
have come to an end.

The Cray XT3/XT4 at the National Center for Com-
putational Sciences (NCCS) at Oak Ridge National Lab-
oratory (ORNL) has been on an aggressive upgrade path
toward a peak of 250 teraflops (TF). Since its initial de-
livery, the machine has been upgraded from a peak per-

formance of roughly 25 TF to more than 119 TF in 2007
and in excess of 250 TF in early 2008. The total num-
ber of processor cores available for application runs has
increased from roughly 5,200 to more than 32,000. Dur-
ing this time, the I/O capabilities have also increased, as
will be described later, but at a slower rate due to the
high cost of I/O hardware. Users have not only had to
adapt to an ever increasing number of processor cores,
but also to the increasing difficulty of achieving efficient
parallel I/O at scale.

To help understand the current and future state of user
requirements (and in particular I/O needs), the NCCS
specifically requested application requirements from the
users of this machine. For the 2007 Innovative and
Novel Computational Impact on Theory and Experiment
(INCITE) projects with allocations on the Jaguar Cray
XT3/XT4 system, the NCCS application requirements
document [8] shows that the largest current data pro-
ducers are the following application codes: CHIMERA,
GTC, S3D, VULCAN2D, Omega3P, and POP. Most ap-
plication codes were found to write restart files on a per-
processor basis in an attempt to easily achieve good per-
formance on the system. Ideally, users would write out
the data via pNetCDF or parallel HDF5, thereby produc-
ing a single portable file at each restart dump. Users also
consider it important to minimize the overhead of writ-
ing restart and analysis files by keeping the time to less
than 5 percent of the total run time.

I/O requirements for an upcoming petaflop system
were also specifically requested from users and devel-
opers of these codes. The users were asked to envision
the science they would like to be doing at the time a
1-petaflop (PF) system would be available. Such use
would require more than just a scaling up of their cur-
rent I/O and includes scaling the science and algorithms
to this new system. The results are highlighted in Table 1
on a per-simulation basis for a 1 PF leadership-class sys-
tem with 200 terabytes (TB) of memory.



Table 1. Petaflopa application I/O requirements per simulation [8].
Code Domain Restart Size Restart Freq File Type

CHIMERA Astrophysics 160 TB 1/hour NetCDF or binary collective
VLUCAN2D Astrophysics 20 GB 1/day Binary, HDF5
POP Climate 26 GB 1/hour Binary, 1 serial file
S3D Combustion 5 TB 1/hour Binary, individual files
GTC Fusion 20 TB 1/hour Binary, individual files

aAssuming a 1 PF machine with 200 TB of memory.

Based on these I/O requirements, it is vitally impor-
tant that users of these systems understand the underly-
ing characteristics of the file system and how to take ad-
vantage of possible optimizations. Without this knowl-
edge, simulations could waste many thousands of hours
of their allocations doing I/O. For example, if we con-
sider the combustion code S3D, which needs to output 5
TB of data every half hour, and if we assume the file sys-
tem and I/O routines could sustain 10 GB/s of through-
put during the simulation (most codes rarely achieve this
level of I/O bandwidth, so the assumption is overly op-
timistic in favor of the file system), it would take 500
seconds (nearly 8.5 minutes) to write out the restart file.
This approach would mean I/O accounts for approx-
imately 15 percent of the wall time between restarts,
which is much higher than the 5 percent threshold re-
quired by users.

To this end, it is our goal to present the methodology
we used to gather and interpret basic I/O performance
characteristics on the ORNL XT3/XT4. This methodol-
ogy is sufficiently general to be used on any machine,
particularly Cray XTs and similar platforms with high
bandwidth file systems.

In Section 2 we provide background information on
the ORNL XT3/XT4 and its Lustre file system as well
as a brief MPI-IO overview as it pertains to our bench-
marks. In Section 3 we then present a large amount
of I/O performance data for many scenarios and inter-
pret the results. Most of the data are from MPI-IO
benchmarks, but some HDF5 benchmark data are also
included. We present our conclusions in Section 4.

2 Background

This section provides an overview of the ORNL Cray
XT3/XT4 and its associated Lustre file system. It also
provides a brief summary of MPI-IO as it pertains to the
benchmarks used in this study.

2.1 Cray XT3/XT4 at ORNL

The work described in this paper was performed on
the Cray XT3/XT4 at the NCCS at ORNL. The XT3
and XT4 represent a line of massively parallel processor
products from Cray, with the XT4 being an evolution-
ary descendent of the XT3. These systems are designed
around the AMD Opteron processor, a scalable custom
interconnect (Cray SeaStar), a lightweight kernel oper-
ating system (Catamount), and a Lustre file system from
Sun Microsystems [4]. See references [6, 11] for more
details on the Cray XT3 and XT4 architectures and in
particular the XT3/XT4 system at ORNL.

It is important to note that as part of ORNL’s path to
constructing a petaflop computer at the NCCS, this sys-
tem went through several software upgrades in a very
short period of time during the course of this study.
The operating system (OS) was upgraded several times
a month, and the default compiler was upgraded often
as well. Although both OS and compiler changes can
affect I/O performance, the primary factor is the config-
uration of the file systems, not the software versions. We
found that although compiler and OS versions vary be-
tween some of the benchmark results presented below,
the effect of these changes is small and does not impact
our conclusions.

Please also note that ORNL’s Cray XT3/XT4 under-
went major changes after this paper was submitted. The
OS was swapped from Catamount to Compute Node
Linux (CNL), and all the nodes were upgraded yet again
from dual-core to quad-core, with a corresponding clock
rate decrease from 2.4 GHz to 2.0 GHz. This made it
unfeasible to gather additional data with any sort of con-
sistency.

2.2 Lustre Basics

High bandwidth I/O on Cray XT3/XT4 systems is
provided by the Sun Microsystems Lustre file system
[3]. Lustre [2] is an object-based parallel file system



designed to provide large, high-bandwidth storage on
large, clustered computers. A Lustre file system has one
or more Object Storage Servers (OSSs), which handle
interfacing between the client and the physical storage.
Each OSS serves one or more Object Storage Targets
(OSTs), where the file objects are stored to disk. The
term “file striping” refers to the number of OSTs used
to store a file. For example, if a file has a stripe count
of four, then it is broken into objects and stored on four
OSTs in round-robin fashion. The file system names-
pace is served by a Metadata Server (MDS). As the name
implies, the MDS is a database that holds the file meta-
data for the entire file system. Whenever a metadata
operation occurs, such as an open or file creation, the
client must poll the MDS. At this time, a Lustre file sys-
tem is limited to one MDS, which can result in a paral-
lel I/O performance bottleneck at large scale. Figure 1
depicts how the Lustre architecture is connected to com-
pute nodes of a Cray XT3/XT4 system.

Figure 1. Lustre architecture.

Files are striped over one or more OSTs when they
are written to the file system. Users have the ability to
adjust the number of stripes (stripe width) and the size of
the objects on disk (stripe size). To put it more plainly,
stripe width relates to how many OSTs are used to store
a file, and the stripe size relates to how large an object is
on disk. Files inherit these parameters from their parent
directory, and users may adjust these parameters using
the lfs command. However, a file cannot have a stripe
width greater than the total number of OSTs configured
in the host file system.

2.3 Lustre on Jaguar

During the time the authors were collecting data
for this paper, the Lustre file system on the Cray

XT3/XT4 system at ORNL underwent several configu-
ration changes, which are summarized in Table 2. While
a having consistent configuration for these studies would
be desirable, the aggressive upgrade path at the NCCS
has made this difficult. Valid trends can still be observed
by evaluating the data collected over the course of the
system upgrades. To that end, the file system configu-
rations available during the study are as follows: The
first configuration (LC1) had a total of 96 OSTs over 48
OSSs. These were configured over 12 DataDirect Net-
works (DDN) 8500 controllers (also known as couplets)
with 8 OSTs per couplet connected to the storage back-
end over 2 Gb/s fibre channel. The disk controllers were
configured with two tiers per logical unit number, where
a tier is a DDN term for a nine-disk, 8+1 RAID array.
The theoretical peak performance of this file system was
2 GB/s × 12 couplets = 24 GB/s.

During a short testing period, the file system was con-
figured (LC2) to 160 OSTs spread over 80 OSS nodes
connected to DDN 9550s via two 4 Gb/s fibre channel
cards per OSS. The theoretical peak of this configura-
tion was 80 GB/s. This file system was then recon-
figured into incarnation (LC3), consisting of 144 OSTs
over 72 OSSs connected to DDN 9550s via two 4 Gb/s
fibre channel cards per OSS. The theoretical peak of this
configuration was 72 GB/s.

It should be noted that the Lustre I/O performance
is strongly dependent on the file system configuration
and weakly dependent on the system architecture when
the nodes performing I/O cannot saturate the file sys-
tem. Differences in performance between the file sys-
tem configurations listed are due to the change in disk
controllers.

2.4 MPI-IO Basics

A standard interface for parallel I/O was added to
the Message Passing Interface (MPI) specification in the
MPI2 specification [7]. Cray provides MPI-IO function-
ality via the ROMIO package [10] developed at Argonne
National Laboratory. The specification provides sev-
eral methods for performing parallel I/O, which can be a
cause for confusion for users. Two methods specifically
used in this paper were explicit file offsets and collective
I/O with fileviews. MPI-IO provides several methods for
performing I/O to a shared file at explicit offsets (e.g.,
MPI FILE WRITE AT and MPI FILE READ AT), re-
quiring the user to calculate a file offset for each process
participating in an I/O operation. This approach may be
convenient when an application has a very regular I/O
pattern.



Table 2. ORNL Cray XT3/XT4 Lustre configurations.
Theoretical

Configuration Machine Disk Controllers # OSSs # OSTs Peak
LC1 XT3 12 DDN-8500 couplets 48 96 24 GB/s
LC2 XT4 20 DDN-9550 couplets 80 160 80 GB/s
LC3 XT3/XT4 18 DDN-9550 couplets 72 144 72 GB/s

Additionally, users may perform collective I/O op-
erations, where all participating processes call an I/O
function and allow the library to handle file partitioning,
data transfer, buffering, etc. Users can establish a file-
view when opening a file for collective I/O operations,
which guides the library on how to partition the file so
that a process “sees” only the part of the file that it needs
without having to worry about calculating a file offset.

MPI-IO also provides a mechanism whereby a pro-
grammer can supply hints to the MPI library. Providing
hints may enable an MPI implementation to deliver in-
creased I/O performance. This mechanism is discussed
in Section 3.2.6, which compares MPI-IO and HDF5
performance.

This is far from an exhaustive explanation of MPI-IO
methods, but it should provide sufficient information for
an understanding of results presented below.

3 Benchmark Methodology and Results

In this section, we present I/O performance data ob-
tained from three different benchmark codes. I/O per-
formance is studied independently of applications be-
cause there is no standard method for carrying out I/O
across codes or even within a code. In fact, application
benchmarks with I/O enabled can often overemphasize
the I/O requirements. Instead, here we attempt to un-
derstand some basic characteristics of the XT3/XT4 file
system with relatively simple benchmarks. Additional
I/O benchmarks and application results can be found in
[12].

Below we describe three codes that were used to test
various aspects of I/O performance of the Lustre file sys-
tem detailed in Section 2. Because users rarely have the
luxury of running with a dedicated system, the authors
collected data during normal operation of the system
without dedicated access, intending to produce results
that would be representative of actual application runs.

3.1 Benchmark Codes

3.1.1 Code 1

Code 1 is a custom code (written by Gene Wagenbreth)
designed to emulate writing a large amount of data to
disk from all processors. This code is a very simple,
buffered, single-file MPI-IO write benchmark that was
designed to model the I/O pattern of a specific applica-
tion. The benchmark was run only to processor counts
appropriate to the application it was modeling. The
benchmark models the behavior of efficiently exporting
a large amount of data from memory to disk, as would
be done in checkpointing. The benchmark version we
used opens a file across all tasks, but in task counts
comparable to the expected number of writers for large
program runs. Each writer in the benchmark uses the
MPI FILE WRITE AT method to write data to a calcu-
lated offset in the shared file. This approach, of course,
assumes a regular amount of data is written by each pro-
cessor, which makes the calculation of offsets and distri-
bution of I/O operations trivial. Furthermore, the appli-
cation also assumes that the time to transfer data to the
writers is trivial in comparison to time required for I/O.

3.1.2 Code 2: IOR

IOR (Interleaved Or Random) [1] is a parallel file sys-
tem test code developed by the Scalable I/O Project at
Lawrence Livermore National Laboratory. This pro-
gram performs parallel writes and reads to/from a file us-
ing MPI-IO (or optionally POSIX or HDF5) and reports
the throughput rates. The name of the program is some-
thing of an historical artifact because this version has
been simplified to remove the random I/O options. IOR
can be used for testing performance of parallel file sys-
tems using various interfaces and access patterns. IOR
uses MPI for process synchronization.

3.1.3 Code 3

Based on results gathered from the above benchmarks,
in later sections we will present results from which the



idea of using a subset of MPI tasks to do the I/O for an
entire application was investigated. Thus, another cus-
tom Fortran code (written by Mark Fahey of ORNL) was
designed to write out contiguous buffers by each pro-
cess in a subset of MPI COMM WORLD either to a single-
shared file or, alternatively, to one file per process. Fur-
thermore, this code was designed to accept run-time pa-
rameters defining a subset of processes with which to
do I/O and to use one of several methods of moving the
data to the subset of processes that do the I/O. (The au-
thor of Code 3 is not aware of this functionality being
available in any standard I/O package.) The intent (as
with the code described in Section 3.1.1) was to model
the behavior of writing a large amount of data to disk,
as in a checkpoint. This technique of using a subset of
processes to perform I/O is referred to as aggregation.

3.2 Benchmark Tests

All results reported below were generated on the
XT3/XT4 machine running Unicos/lc 1.5. For all tests,
the Lustre file system stripe sizes and stripe counts were
set using the lfs setstripe command prior to run-
ning the benchmarks. The stripe count was set to the
maximum, and the stripe size was set to one megabyte
(MB) for all tests unless otherwise noted.

As discussed above, results were obtained with dif-
ferent configurations of the file system described in Ta-
ble 2. Note that all results were obtained in nondedicated
mode; that is, the machine (and the Lustre file system)
were being used by multiple users, as would be typical
for actual application runs.

3.2.1 Single Writer Performance

First I/O performance on a single task was studied. Be-
cause it unfortunately is still common practice to send
all data to a single node to be written to disk, it is worth-
while to investigate the efficacy of this practice. This
method suffers from networking overhead when trans-
ferring data to the single writer and a bottleneck when
outputting all a program’s data through a single node.
Writing from a single node simply will not saturate the
file system bandwidth needed for large I/O operations,
but it can give some insight for tuning parallel I/O oper-
ations.

Benchmark Code 1 was used to perform these tests.
It was compiled with version 6.2 of the Portland Group
(PGI) compiler suite. The Lustre file system was set up
as configuration LC2 for the tests in this section.

Figure 2a illustrates the bandwidth of a single writer
to a single OST, varying the user-allocated buffer and

a.

���
����

��
���

���
����

���

�	��

����

�	���

�
��

�	
��

�

��

���

���

���

���

���

�
�
�
�
�
��
��
	

�
��

�����	����

�
��
��
�
	�
��
�

�	�����	�	������

b.

���
�	��

����
�	���

�
��
�	
��

�

��

��

���

���

���

�

���

���

���

���

���

���

�
�
�
�
�
��
��
	

�
��

������	����

�
��
��
�
	�
�

�
�

�	�����	��
�	�����

c.

���
�	��

����
�	���

�
��
�	
��

���

����

��

���

���

����

�

���

���

���

���

���

���

���

�
�
�
�
�
��
��
	

�
��

������	����

�

��
�
�	
�
��
�

�	�����	���	�������

Figure 2. Bandwidth when writing from
one client (a) to one stripe, varying the
size of the buffer and stripe; (b) with a
100 MB buffer, varying the stripe size and
width; and (c) to a file with a stripe width
of 160, varying the size of the buffer and
stripes.



stripe size. It is clear that one writer and one OST will
not achieve high bandwidth due to the limited bandwidth
available to a single OST (roughly 500 MB/s for this
configuration), but the striking observation gleaned from
this figure is the importance of buffering I/O operations.
Varying the size of the file system stripe had little effect
on the bandwidth, but varying the size of the user buffer
greatly affected the bandwidth. The need to buffer I/O
operations should be obvious, and Figure 2a shows that
a 1 to 10 MB buffer can significantly improve write per-
formance.

Figures 2b–c show further evidence of the need to use
multiple writers to achieve reasonable bandwidth. No
matter how widely the file was striped, this benchmark
was unable to achieve greater that 600 MB/s of write
bandwidth. Although an increase in bandwidth was ob-
served, even with maximum striping, the performance
was well below acceptable levels. It is simply impossi-
ble for a single writer to saturate the available file system
bandwidth.

Collectively, the data indicate that when using one
I/O task, a code cannot take advantage of a large Lustre
file system, as would be expected. Furthermore, stripe
counts greater than one do have a positive effect, but
only up to a relatively small amount, around 10 to 20
percent. On the other hand, stripe size is essentially ir-
relevant in this scenario, except when the stripe size is
set too large.

3.2.2 Fixed Number of Stripes

By fixing the number of stripes for a given file and vary-
ing the number of writers, we were able to make ob-
servations about the desirable ratio of writers to stripes.
While a one-to-one ratio sounds logical, it may not be
the most practical or efficient.

Code 1 was compiled with version 6.2 of the PGI
compiler suite. The Lustre file system was set up as con-
figuration LC2 for the tests in this section.

The graphs in Figures 3a–c plot the I/O performance
for a fixed stripe count of 150, while varying the stripe
and buffer sizes along the axes and the number of writ-
ers between graphs. Figure 3 shows that having signif-
icantly fewer writers than stripes does result in lower
write bandwidth, while having nearly as many or slightly
more writers than stripes achieves higher write band-
width. The difference between the bandwidth at 100 and
150 writers is negligible.

The results indicate that not only may I/O rates be im-
proved through the obvious approaches of using a buffer
size of at least 1 to 10 MB and striping across a large
portion of the available OSTs, but also that a sufficient

a.

���
�	��

����
�	���

�
��
�	
��

���

����

��

���

���

����

�

�

�

�

�

�

�

�



	

��

�
�
�
�
�
��
��
	�
�
��

������	����

�

��
�
�	
�
��
�

��	��������	���	�������

b.

���
�	��

����
�	���

�
��
�	
��

���

����

��

���

���

����

�

�

�

�

�

�

�

�



	

��

�
�
�
�
�
��
��
	�
�
��

������	����

�

��
�
�	
�
��
�

���	��������	���	�������

c.

���
�	��

����
�	���

�
��
�	
��

���

����

��

���

���

����

�

�

�

�

�

�

�

�



	

��

�
�
�
�
�
��
��
	�
�
��

������	����

�

��
�
�	
�
��
�

���	��������	���	�������

Figure 3. Write bandwidth for 150 stripes
with (a) 50, (b) 100, and (c) 150 writers.
The bottom and side axes of each graph
are the stripe size and buffer size, respec-
tively.



number of I/O nodes must be used to sustain high per-
formance.

These graphs suggest that there is no reason to have
less than a one-to-one relationship between writers and
stripes. This particular benchmark was not used to ex-
plore using more writers than OSTs; see Sections 3.2.4
and 3.2.5.

3.2.3 Fixed Number of Writers

Similarly, fixing the number of writers and varying
the other parameters can provide additional insights.
Benchmark Code 1 was compiled with version 6.2 of
the PGI compiler suite. The Lustre file system was set
up as configuration LC2 for the tests in this section.

The graphs in Figures 4a–c illustrate the need for
buffering by varying the size of buffers between graphs.
The significant improvement in performance as the
buffer size increases should be noted. Buffer sizes be-
low 1 MB are not shown, but they result in poorer per-
formance. While many applications are unable to sacri-
fice 10 to 100 MB for use in I/O buffers, these graphs
make it clear that whatever sacrifice can be made for I/O
buffers will result in improved I/O performance.

The clearest result from the above benchmarks is the
importance of buffering I/O operations. While adjusting
the stripe size and width does provide noticeable gains in
write performance, the use of large I/O buffers seems to
have the most pronounced effect on performance. This
benchmark also substantiates the idea of using at least as
many writers as the stripe count.

3.2.4 Scaling Results

The benchmarks thus far have tested the file system with
up to 150 clients. A major thrust of this research was to
test the Lustre file system at scale; that is, to test the
file system doing parallel I/O out to many thousands of
clients. Some scalability issues are seen only when test-
ing with a large fraction of the available resources.

Benchmark Code 2 was used to test the scalability of
the Lustre file system by performing parallel I/O tests
out to many thousands of processors. Code 2 was com-
piled with version 6.1 of the PGI compiler suite. The
Lustre file system was set up as configuration LC3 for
the results in this section.

Figure 5 shows the performance results when using
IOR with constant buffer size per client (core) and in-
creasing the number of clients. The top plot in Figure 5
is the case when writing or reading with one file per
client, while the bottom graph is for a shared file. The
maximum achieved bandwidths are 42 GB/s (read) and

a.

�����
������

��	���
���	���

�
����
��
����

�

�	

�	

�		

��	

��	

	

�

�



�

�

�

�

�

�

�
�
�
�
�
��
��
	

�
��

�����	���


��
��
�
	�
�
�
�
�

��	��������	�	��	������

b.

�����
������

��	���
���	���

�
����
��
����

�

�	

�	

�		

��	

��	

	

�

�



�

�

�

�

�

�

�
�
�
�
�
��
��
	

�
��

�����	���


��
��
�
	�
�
�
�
�

��	��������	��	��	������

c.

�����
������

��	���
���	���

�
����
��
����

�

�	

�	

�		

��	

��	

	

�

�



�

�

�

�

�

�

�
�
�
�
�
��
��
	

�
��

�����	���


��
��
�
	�
�
�
�
�

��	��������	���	��	������

Figure 4. Write bandwidth for 50 writers
with (a) 1 MB, (b) 10 MB, and (c) 100 MB
buffers. The bottom and side axes are
stripe size and stripe count, respectively.



Figure 5. These graphs fix the buffer size
per core at 2, 8, or 32 MB for writes and
reads and vary the number of clients along
the x-axis. Output was to (top) one file per
process and (bottom) a single shared file.

25 GB/s (write) for one file per client and 34 GB/s (read)
and 22 GB/s (write) for a shared file.

The scalability of Lustre was also tested by keep-
ing the aggregate file size constant while increasing the
number of clients in an attempt to more accurately sim-
ulate what a user of a large-scale XT3/XT4 machine
might consider when designing a large run. In Figures 6
and 7, the aggregate sizes of the files were kept con-
stant at 16 GB and 64 GB, respectively. In other words,
as the number of clients increased, the I/O per core de-
creased. In Figures 6 and 7, the top plots show the per-
formance for one file per client, while the bottom depicts
the shared-file performance.

In Figure 6, the maximum write performance is
approximately 22 GB/s for both file-per-process and
shared-file methods. The maximum read performance
is approximately 37 GB/s when doing one file per pro-
cess and 33 GB/s for a shared file, very similar to the
results shown above. Similarly, in Figure 7 the maxi-
mum write performance is approximately 26 GB/s for
the file-per-process method and 22 GB/s for the shared-

Figure 6. These graphs fix the aggregate
file size at 16 GB and vary the number
of clients along the x-axis for writes and
reads. Output was to (top) one file per pro-
cess and (bottom) a single shared file. The
“-1” and “-2” in the legend represent two
separate sets of runs.

file method. The maximum read performance is approx-
imately 40 GB/s for a file per process and 37 GB/s for
a shared file. As expected, I/O is more efficient when
writing out larger buffers, as shown by the greater I/O
bandwidths for the 64 GB file versus the 16 GB file.

The results above clearly illustrate that the achievable
bandwidth drops dramatically in all three scenarios (Fig-
ures 5–7) for both one file per process and a shared file
after it reaches a maximum somewhere around 500 to
2,000 clients. We are not certain why the performance
eventually decreases to an asymptotic level—the same
behavior occurs for both read and write—but conjecture
the following: Much of this decrease can be attributed
to an overloading of the single MDS, as mentioned in
Section 2.1. Reference [12] presents data showing a sig-
nificant increase in the time required for an open as the
number of clients increases. We additionally speculate
that the increased number of clients per OST causes ad-
ditional overhead, which reduces the achievable band-
width per OST.

Regardless, it seems clear that using a subset of the



Figure 7. These graphs fix the aggregate
file size at 64 GB and vary the number
of clients along the x-axis for writes and
reads. Output was to (top) one file per pro-
cess and (bottom) a single shared file.

application tasks to do I/O will result in better overall
performance at scale. Additionally, these plots indicate
that using more than one client per OST is the only way
to get the practical peak performance because the max-
ima occur between 500 and 2,000 clients, and the file
system has 144 OSTs. And a third observation is that the
performance when doing I/O to a shared file and to one
file per task are qualitatively different, but is it unlikely
that the difference is sufficient to change how users run
on the file system.

3.2.5 Subsetting Results

The results in the previous subsection suggest that using
a subset of nodes for I/O may provide better bandwidth
than using all the available processes to do I/O. Code 3
was used to investigate this hypothesis and was com-
piled with version 7.0 of the PGI compiler and run on
Lustre configuration LC3.

Table 3 summarizes the results of running Code 3
with 12,288 processes in which each process had an 8
MB buffer that needed to be checkpointed. All these
runs performed I/O to a single shared file. As with most

of the results presented here, the runs were in nondedi-
cated mode, and we report the maximum over three runs.

As alluded to in Section 3.1.3, the code has mul-
tiple methods of doing parallel I/O. These are as follows:

mpiio This method involves straightforward use of
MPI-IO routines in which every process takes
part in I/O.

agg For each subset, all the processes in a subset
send their data to the group’s master process,
which then writes out one large buffer.

ser For each subset, each process sends its data to
the master process in order, and when received
the data are immediately written out. In effect,
the data are written out in parallel across the
subsets, but serially within each subset.

swp For each subset, each process writes out its own
data in order according to its rank within the
subset. This can be thought of as sweeping
through the subsets. I/O is serial within a sub-
set, but each process writes out its own data in
parallel across the subsets.

Note that all methods use MPI-IO routines to
actually perform I/O. The mpiio and swp meth-
ods involve all processes in I/O, but agg and ser
involve only some subset of processes. The agg
method has been implemented with both collective
(MPI FILE SET VIEW + MPI FILE WRITE) and
independent (MPI FILE WRITE AT) MPI-IO calls.
The mpiio method is the only other collective method
we have implemented to date. The other methods (ser
and swp) use independent MPI-IO functions.

In Table 3, the 1,536 entry indicates that there were
1,536 subsets of eight processes each. Similarly, for the
768 entry, there were 768 subsets of 16 processes each,
and for 512, there were 512 subsets of 24 processes each.

The mpiio method shows that straightforward use of
MPI-IO with 12,288 processes results in 5.4 GB/s I/O
throughput. The agg and ser methods demonstrate that
the subsetting methods can achieve much higher band-
widths, in particular as high as 29 GB/s for the case with
1,536 subsets. These tests provide early evidence that
using a subset of tasks for I/O produces significantly
better performance than using all the available cores at
scale.

Although three different subset sizes were tested in
what appears to be the optimal range of I/O writers, it
is not clear from the results if there is an optimal sub-
set size or even an optimal I/O method for a particular
subset size.



Table 3. MPI-IO write bandwidth in GB/s.
MPI-IO Number of Subsets and Method

12,288 1536 768 512
mpiio agg ser swp agg ser swp agg ser swp

Collective 5.4 19.6 21.4 19.1
Independent 29.0 20.9 5.4 27.4 25.1 5.4 25.0 25.4 5.6

3.2.6 MPI-IO and HDF5

In this section, results comparing the performance of
MPI-IO and HDF5 using Code 2 are presented. As men-
tioned in Section 1, many users wish to use a portable
I/O library like HDF5. Therefore, understanding the per-
formance of HDF5 (especially relative to MPI-IO) is es-
sential.

Code 2 was compiled with version 7.0 of the PGI
compiler suite. The Lustre file system was set up as con-
figuration LC3 for the results in this section.

Figures 8 and 9 show results when running IOR to
test both the MPI-IO and HDF5 interfaces. The IOR
blocksize (-b) was set to 16 MB. A trend line is plot-
ted for various transfer sizes indicated by -t. Also, -c
indicates that IOR used a collective call, and -V indi-
cates MPI-IO fileviews were used. Lastly, hint indi-
cates an MPI-IO hint was specified, and EnvVar indi-
cates a Lustre-specific environment variable was set.

The write performance data from Figure 8 show that
HDF5 performance is nearly the same as that of MPI-
IO. The plots do show that one must be careful when us-
ing collective HDF5 or fileviews with MPI-IO (at least
within the context of IOR) where performance will be
tens of megabytes per second rather than gigabytes per
second. The read performance data from Figure 9 show
a much different picture than for writes. HDF5 per-
formance reaches an asymptotic bandwidth around 1.6
GB/s, with some cases reaching approximately 2 GB/s
at 512 clients. On the other hand, MPI-IO performance
attains a bandwidth of 18 GB/s when the transfer size
is large (16 MB) and a bandwidth of 13 GB/s for the
smaller transfer size of 256 KB when doing collective
I/O. Basically, there is an order of magnitude difference
in HDF5 performance as compared to that of MPI-IO.

Note that for some of these runs, some lesser-
known optimizations were employed to get the best
performance. For example, the environment vari-
able MPICH ROMIO RECORD LOCKING was set to 1
when performing collective I/O with HDF5 to raise
10 MB/s performance to gigabytes per second. And
when using the fileview option with the MPI-IO
method in IOR, it is essential that the MPI-IO hint

Figure 8. MPI-IO (top) and HDF5 (bottom)
write performance.

romio ds [read,write] be set to “disable” or per-
formance will be in the low megabytes per second as
well. (The “ds” stands for data sieving [9].)

4 Conclusions

It is clear that application developers will face many
new challenges as computing systems build up to and
beyond the petaflop level, not the least of these will be
I/O. I/O subsystems are simply unable to keep up with
system growth due to cost and technological limitations.
At the NCCS at ORNL, scientists are working to un-
derstand both current and future I/O needs of users and



Figure 9. MPI-IO (top) and HDF5 (bottom)
read performance.

to use this information to make decisions about future
systems. It is also critical for users to understand their
application’s current and future I/O needs, taking into
consideration the increasing complexity of the science
problems that will be solved on these larger machines.
Users must also be aware of the I/O capabilities of the
systems they use and how to best exploit the system’s
strengths. Admittedly, this is a very difficult task, so we
make the following observations based on our bench-
mark data.

The data from Code 1 underscore the importance of
buffering I/O into large operations. While a large I/O
buffer does decrease the memory available for compu-
tation, having a 10 to 100 MB buffer can significantly
improve I/O performance and lessen the impact of I/O
on application run time. These data also show that us-
ing more OSTs than I/O processes in a Lustre file sys-
tem simply does not make sense. Code 2 demonstrates
the importance of performing very large scale I/O over
a smaller subset of available processes. It was observed
that on the particular file system benchmarked with 144
OSTs, using 500 to 2,000 I/O processes seemed to give

the best I/O performance. Subsetting has the added
benefit of improving I/O buffering as well. Code 2
also showed that given the proper configuration, paral-
lel HDF5 writes can achieve performance comparable to
that when using MPI-IO directly; however, HDF5 read
performance was an order of magnitude worse than for
MPI-IO for our tests. Code 3 tested several methods of
doing I/O subsetting and confirmed that I/O subsetting
substantially improves I/O performance for very large
processor counts.

Some straightforward I/O performance character-
istics on the ORNL XT3/XT4 have been presented.
Benchmarks designed to represent applications with de-
manding requirements in mind were performed; the
lessons learned are of clear benefit to users of Cray XTs
and similar platforms with high bandwidth file systems.
Because the data presented in this paper were collected
with specific I/O configurations, some of our conclu-
sions may apply only to similar configurations.

It is unlikely that a set of firm rules can be developed
for I/O operations, so as with Code 3, application I/O
should be written in a manner that is flexible enough to
be adapted to system capabilities. Upon porting a code
or problem to a specific machine, users may then model
their application’s I/O and quickly determine a reason-
able set of I/O parameters to use. Just as algorithmic
kernels can be used to easily and quickly tune an appli-
cation’s performance on a given system or architecture,
modeling an application’s I/O can help improve overall
application performance and productivity.

Acknowledgments

This research was sponsored by the Mathemati-
cal, Information, and Computational Sciences Divi-
sion, Office of Advanced Scientific Computing Re-
search, U.S. Department of Energy under contract num-
ber DE-AC05-00OR22725 with UT-Battelle, LLC. This
research was also sponsored by the Research Alliance
in Math and Science program, which is sponsored by
the Mathematical, Information, and Computational Sci-
ences Division, Office of Advanced Scientific Comput-
ing Research, U.S. Department of Energy.

This research used the resources of the NCCS at
ORNL, which is supported by the Office of Science of
the U.S. Department of Energy under contract number
DE-AC05-00OR22725.

Data for Sections 3.2.1 through 3.2.3 were collected
by Gene Wagenbreth, who wrote Code 1.



References

[1] IOR benchmark. ftp://ftp.llnl.gov/pub/siop/ior.
[2] Lustre. http://www.lustre.org/.
[3] Sun Luster File System.

http://www.sun.com/software/products/lustre.
[4] Sun Microsystems. http://www.sun.com/.
[5] TOP 500. http://top500.org/.
[6] S. R. Alam, R. F. Barrett, M. R. Fahey, J. A. Kuehn, J. M.

Larkin, R. Sankaran, and P. H. Worley. An early evalu-
ation for petascale scientific simulation. In Proceedings
of the ACM/IEEE SC2007 Conference, 2007.

[7] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. Snir. MPI The Complete
Reference: Volume 2 - The MPI Extensions. MIT Press,
September 1998.

[8] D. Kothe and R. Kendall. Computational science re-
quirements for leadership computing. Technical Report
ORNL/TM-2007/44, ORNL, July 2007.

[9] R. Thakur, W. Gropp, and E. Lusk. Data sieving and col-
lective I/O in ROMIO. In Proceedings of the 7th Sym-
posium on the Frontiers of Massively Parallel Computa-
tion, 1999.

[10] R. Thakur, E. Lusk, and W. Gropp. Users guide for
ROMIO: A high-performance, portable MPI-IO imple-
mentation. Technical Report Technical Memorandum
ANL/MCS-TM-234, Mathematics and Computer Sci-
ence Division, Argonne National Laboratory, 2004.

[11] J. S. Vetter, S. R. Alam, T. Dunigan, M. R. Fahey,
P. Roth, and P. H. Worley. Early evaluation of the Cray
XT3. In Proceedings of the 20th IEEE International
Parallel & Distributed Processing Symposium (IPDPS),
2006.

[12] W. Yu, J. Vetter, and H. S. Oral. Performance character-
ization and optimization of parallel I/O on the Cray XT.
In Proceedings of the 2008 IEEE International Parallel
& Distributed Processing Symposium (IPDPS), 2008.


